Surface Mount Assembly Procedure of PoP Components
A. Homogeneity
Initially, homogeneity was inspected in the way that dipping material was first smeared on the surface of glass and then was observed under an optical microscope. If even creaminess texture was observed, it was indicating that homogeneity was successfully achieved. But if wavy or grainy appearance, large particles and conglomerates were found, it was indicating that homogeneity wasn't achieved. Requirements on homogeneity are determined by size of PoP. Generally, particles whose diameter exceeds one third of that of solder mustn't be mixed in dipping.
B. Staying time on a tray
In the process of dipping, flux or solder paste is evenly distributed on a rotating tray by a doctor blade capable of setting the thickness. Owing to moisture ingression or evaporation, attributes of material will go down or even lead to inconsistency. Staying time should be as long as a whole work shift (8 to 10 hours) and can be calculated by monitoring the consistency of PoP after dipping with dipping equipment. Moreover, viscosity of solder paste and flux can be measured based on regulations of IPC-TM-650 in which printing thickness is stipulated to be in the range from 200-250μm.
C. Consistency between dipping amount and volume
It's a complicated issue to determine consistency between dipping amount and volume, especially for flux dipping. PoP dipping amount can be calculated through measuring its weight before and after dipping.
Dipping solder paste consistency can be inspected under an optical microscope after dipping by inversing PoP. It's such a challenging task to measure consistency of flux dipping due to transparency of flux that the following steps are provided as a guide:
Place flux in a rotary pool and use a fixed rubber roller to ensure the consistency.
Pick PoP and dip it into flux.
Place PoP onto a copper board and then pick PoP to make flux left on the board.
Observe the copper board under a microscope with a magnification of 45.
Another method to measure the distribution of flux is to stack PoP through flux dipping onto a piece of glass laminate and then to tie them together with tape. Turn the integration over and distribution of flux can be observed. Halo of flux can be directly seen on the glass laminate.
When it comes to flux that has been colored, it's easier to measure consistency of its flux distribution. Nevertheless, volume of dipped flux is so small that coloring method is usually neglected.
D. Waiting time prior to reflow soldering after dipping
Generally speaking, waiting time prior to reflow soldering after dipping lays little influence on soldering quality and even dry flux won't lead to extremely low soldering quality. In many situations, gel flux is sufficient for reliability of solder. But solder paste has a totally different story. Because solder paste powder tends to be oxidized, acceptable waiting time prior to reflow soldering after dipping has to be ensured in advance.
Waiting time identification can be achieved through an experiment in which solder forming is observed, aiming to eliminate oxide prior to solder forming, which helps ensure excellent solder forming. As a result, flux or solder paste has to be tested in extreme environment so as to indicate whether they are capable of maintaining longer waiting time prior to reflow soldering after dipping. Conditions and requirement of this experiment include:
Flux or solder paste has to be exposed to high humidity.
Prior to reflow soldering, flux or solder paste has to be exposed to the air for a long time in high temperature. For example, relative humidity should be 95% and exposure time is respectively 2/4/8 hours when performance of flux or solder paste is tested.
After reflow soldering, solders have to be inspected under X-ray to find defects such as wetting, cavity and bridging.
In this experiment, dipped PoP configuration should be turned over first and then exposed to high temperature and high humidity in order to avoid damaging flux or solder paste that has been dipped on solder.
E. Flux dipping
Flux dipping features three leading advantages: size difference that originally occurs between solders won't be magnified; technique is controllable; material is easy to be picked.
Since chip features a low warpage, application of flux in FC won't lead to open soldering. Perhaps based on the experience of applying FC, dipping flux was initially selected by PoP. However, PoP owns at least two contact surfaces (circuit board and bottom PoP, bottom PoP and top PoP) each of which features potential warpage issues. The solution to this problem lies in flux dipping thickness improvement that may not cause soldering defects but will definitely lead to a larger amount of contaminant, which is possibly a genuine problem for afterward bottom filling.
F. Solder paste dipping
To solve the problem caused by PoP warpage, it's necessary to use solder paste dipping as replacement of flux dipping. Compared with flux dipping, merits of solder paste dipping include:
Capable of compensating for warpage of components and substrate to some extent;
Excellently compatible with current techniques without need for extra techniques' participation;
After soldering, a relatively large distance between component and board is beneficial to reliability;
Prior to surface mounting, solders with solder paste dipping tend to be inspected more easily.
Although solder paste dipping has been regarded as optimal alternative with quality and performance considered first, it features disadvantages:
Capable of magnify distinctions between solders;
Such limited types of solder paste that can be applied and costly.
Type V solder paste or solder paste with smaller particles are suggested to be applied in dipping. Metal content of solder paste should be approximately 80%-85% w/w and application of solder paste contributes to connection between solder and pad, shrinking the possibility of open soldering. As solder paste with tiny particles features a high level of oxidization, application of such type of solder paste can not only improve homogeneity but delay fusion procedure as well.
In the procedure of reflow soldering, because top package of PoP maintains a high temperature, core ingression may take place on solders in spite of existence of solder paste, which perhaps lead to open soldering. When solder paste containing tiny particles is applied, a lower melting speed of solder paste can lead top package and bottom package to simultaneously reach the same temperature so that core ingression can be prohibited.
Thickness of solder paste dipping should be determined by dimensions of component solders to ensure suitably stable and even thickness and make the smallest solder to be dipped by solder paste. Solder paste dipping depth must be rigorously controlled. It is indicated by experiments that when dipping depth exceeds 50% of solder height, on one hand, amount of solder paste will be increased; on the other hand, solder paste will wrap around the ball terminations, leading to excess solder paste deposition, which will possibly bring about soldering defects.
Step Three: PoP Component Positioning
Owing to special structure of PoP, much care has to be taken into top package positioning and control because all advanced surface mounting system has to ensure Z-axis dimensions accuracy control and to withstand shock and vibration in the process of assembly.
Stacking feature of PoP tends to cause displacement. During mounting, random vibration will be caused at times due to stretching of conveyor belt of mounting equipment. Gas convection has to be carefully considered in reflow soldering equipment, as sometimes it can also cause the vibration.
Step Four: Reflow Soldering of PoP
Lead-free techniques tend to bring about defects such as metal oxidation, bad wettability and incomplete solder. In nitrogen with a low concentration of oxygen (50ppm), soldering reduces metal oxidation and performs excellent wettability, capable of contributing to the forming of complete collapse. Moreover, it performs well in self-centering with soldering cost increased by 25%-50%.
Because lead-free soldering features a high temperature, relatively thin components or substrates (thickness could be 0.3mm) are easy to be deformed in the process of reflow soldering, it's necessary to demand delicate and optimized reflow soldering temperature curves. Furthermore, internal temperature of top package components and bottom package ones play such a key role in reflow soldering that surface temperature of top package components shouldn't be too high while solder and solder paste belonging to bottom package component have to be fully melted to be high-quality soldering spots. When it comes to multiple stacking assembly, temperature rising speed is suggested to be controlled within 1.5℃/s to stop some defects from occurring including thermal shock, in-furnace displacement etc. On the premise of soldering quality guarantee, reflow soldering temperature should be as low as possible to decrease possibility of thermal distortion to the largest extent.
It's also worth reminding that due to plastic as packaging material of PoP, humidity of PoP has to be strictly managed to avoid popcorn.
Step Five: Optical and X-ray Inspection of PoP
Many types of defects may occur in the procedure of PoP assembly and soldering, such as Open soldering, Cold soldering, Bridging, Core ingression, Insufficient solder paste, Excess solder paste, Solder cavity, Solder loss, Lifted pads, Pillow defect, Debris, Tin ball, Excess flux, Package warpage, Broken package, Damaged solder mask and Solder mask displacement. Inspection methods help to defeat those defects, including AOI, endoscopic inspection, X-ray inspection, oblique X-ray inspection and 3D X-ray inspection. The following table showcases each method's inspection capabilities based on its attribute.
Endoscopic inspection can be applied to check defects 2D X-ray fails to check including open soldering, core ingression, insufficient solder paste, pad peeling and debris (non-metal). Its main disadvantage lies in its disability in solder inspection inside a BGA. However, it does cost less than X-ray inspection and can be applied as a multi-function inspection tool capable of capturing images and videos during soldering.
2D X-ray inspection can inspect defects such as bridging, solder cavity, solder loss, tin ball, solder mask damage and displacement. Nevertheless, it fails to inspect defects including open soldering, cold soldering and insufficient solder paste under some circumstances. Those inspections can't be inspected until oblique view at highest magnification (OVHM) is applied due to its accurate and excellent performance. A 2D X-ray inspection tool features a resolution of 8-10μm and some advanced systems can feature a resolution of less than 1μm.
3D X-ray inspection integrates functions of both endoscopic inspection and 2D X-ray inspection, capable of inspecting solder connection and internal metallographic structure. Its leading disadvantage is high expense, low inspection speed and redundant functions. Therefore, it works best for highly complex technologies and products.
Application of 2D X-ray plus oblique view inspection is capable of implementing functions including:
PoP assembly and soldering defect inspection;
PoP stacking situation confirmation;
Warpage inspection.
Section
Surface Mount Assembly Procedure of PoP Components_1
Surface Mount Assembly Procedure of PoP Components_2
Capacités
Capacité PCB rigide
Capacité PCB flexible
Capacité d'assemblage PCB
Équipement PCB
Équipement d'assemblage PCB
Méthodes de paiement
Prix spéciaux
Transporteurs
Support pour amateurs
Certificat
Assistance clientèle
Suivez-nous
Tel: 1-905-339-2881
Email: sales@goldphoenixpcb.com , tech@goldphoenixpcb.com
Copyright Gold Phoenix PCB Co., Ltd. 2011 - 2023
Tel: 1-905-339-2881 Email: sales@goldphoenixpcb.com , tech@goldphoenixpcb.com
Système de contrôle qualité | Service produit
| Liens
Copyright Gold Phoenix PCB Co., Ltd. 2011 - 2023